1 Introduction

If a flow is unstable, disturbances grow, but their growth does not continue indefinitely. Rather, there exists a upper bound to the growth. Sherman (1966) proposed a method to calculate a fully non-linear rigorous upper bound for the growth of disturbances from barotropic instability using the conservation of the pseudo-momentum density.

The upper bound, however, was not the tightest upper bound under the constraints of the conservation of all considered invariants. A tighter bound was obtained by Ishioka and Yoden (1996) by revising the method of Sherman (1966). They also proposed a new method to calculate the tightest upper bound under the constraints of the conservation of all considered invariants. They applied these two methods to several basic flow profiles and showed that the values of the two upper bounds were approximately equivalent, with a relative error of ~1%. This implies that the revised version of the method of Sherman (1966) can yield the tightest upper bound under the considered constraints. No proof for the equivalence, however, has yet been reported.

In the present study, a proof for the equivalence is presented, and a more efficient method is proposed to calculate the upper bound.

2 Two upper bounds given by Ishioka and Yoden (1996)

The system under consideration is an incompressible, inviscid, two-dimensional fluid flowing over a rotating sphere. The system is governed by the material conservation of the absolute vorticity q. Let us consider the time-evolution from the following initial condition:

$q = q_{\text{initial}} + (\text{an infinitesimal disturbance}),$ where, μ is the sine latitude, and q_{initial} is a non-monotonic function of μ, so that barotropic instability can occur. The problem we consider here is to obtain the upper bound for the wave enstrophy Q_j that can attain in the time evolution.

2.1 The direct bound

Because of the incompressibility and the material conservation of the absolute vorticity q, any possible distribution of q in the time evolution must be a rearrangement from the initial distribution q_{initial}. We divide the sphere into M latitudinal belts of equal area. Numbering the belts starting from the south, we define the j-th belt to occupy the interval $-1 + j - 1/2 \Delta \mu \leq \mu \leq -1 + j - 1/2 \Delta \mu$ in the μ-coordinate ($j = 1, 2, \ldots, M$). Here, $\Delta \mu = 3/M$. Normalized by the total area of the sphere, each latitudinal belt has an area of $1/M$. For each latitudinal belt, we define μ_j as $\mu_j = -1 + j - 1/2 \Delta \mu$ ($j = 1, 2, \ldots, M$), which we regard as the representative μ value of the j-th belt.

If we introduce r_{ij} ($i, j = 1, 2, \ldots, M$) to indicate the area of the air parcel that is initially in the i-th belt and then moves to the j-th belt, we can describe any rearrangement of air parcels using the matrix (r_{ij}). Considering that an area cannot be divided into negative and each belt has an area of $1/M$, the constraints that must be satisfied by (r_{ij}) are written as follows:

$r_{ij} \geq 0 \quad (i, j = 1, 2, \ldots, M), \quad (1) \quad \sum_{j=1}^{M} r_{ij} = 1/M \quad (j = 1, 2, \ldots, M), \quad (2) \quad \sum_{i=1}^{M} r_{ij} = 1/M \quad (i = 1, 2, \ldots, M). \quad (3)$

We hereafter refer to any rearrangement of air parcels described using (r_{ij}) that satisfies constraints (1) through (3) as air parcel exchange. Assuming the absolute vorticity of the air parcel that is initial in the i-th belt as $q_i = q_{\text{initial}}(\mu_i)$ ($i = 1, 2, \ldots, M$), the average of the absolute vorticity in the j-th belt can be defined as

$q_j = \sum_{i=1}^{M} r_{ij} q_i \quad (j = 1, 2, \ldots, M). \quad (4)$

Using q_j, the total angular momentum D_j, the zonal enstrophy F_j, and the wave enstrophy F_0 can be defined as follows:

$D_j = \frac{1}{M} \sum_{i=1}^{M} r_{ij} q_i^2 \quad (j = 1, 2, \ldots, M). \quad (5)$

$F_j = \frac{1}{M} \sum_{i=1}^{M} r_{ij} \frac{d}{d \mu_i} q_i^2 \quad (j = 1, 2, \ldots, M). \quad (6)$

$F_0 = \sum_{j=1}^{M} r_{ij} \frac{d}{d \mu_i} q_i^2 \quad (j = 1, 2, \ldots, M). \quad (7)$

Now, we consider a maximization problem for F_0 under constraints (4) through (6) for (r_{ij}) and the conservation of D_j. This problem is a convex quadratic programming problem. The upper bound for F_0, which can be computed by solving the convex quadratic programming problem, is referred to as the direct bound.

2.2 The revised Shepherd's bound

After defining q_{max} and q_{initial} as the minimum and the maximum values of q_i ($i = 1, 2, \ldots, M$), we introduce $Y(q)$ as a non-decreasing and piecewise differentiable function of q_i, for which the domain of definition is $q_{\text{initial}} \leq q \leq q_{\text{max}}$. Next, we define $Q(q)$ as the inverse of $Y(q)$. Using $Y(q)$ and $Q(q)$, we define the following function:

$A_Q(q, q_i) = - \int_{q_i}^{q} Y(q) (q - q_i) dq$. This function corresponds to the pseudo-momentum density if we consider $Q(q)$ to be the basic state and $q = Q(q)$ to be the perturbation. The quantity $\sum_{j=1}^{M} A_Q(q_j, q_i) r_{ij}$, for example, is invariant for any air parcel exchange that conserves D_j. Using the mean-value theorem, we obtain the following inequality:

$F_0 \leq \frac{1}{\text{min}_j} \sum_{j=1}^{M} A_Q(q_j, q_i)$. \quad (9)

Here, min_j is the minimum of dY/dq. If we can solve a variational problem of the function $Y(q)$ to minimize the right-hand side of (9), we can obtain an upper bound for F_0. This bound is referred to as the revised Shepherd’s bound.

3 Outline of the proof

First, we sort the initial profile (q_i) through air parcel exchange so that it becomes non-decreasing with respect to the suffix i. For the realized profile (\tilde{q}_i), the following inequality holds:

$\tilde{q}_1 \leq \tilde{q}_2 \leq \ldots \leq \tilde{q}_M$. \quad (10)$

The total angular momentum corresponding to the sorted profile, $D^{(0)}$, is larger than D_{initial}. Starting from the sorted air parcel exchange is conducted where the gradient of the profile, $(\tilde{q}_M - \tilde{q}_1)/\Delta \mu$ ($j = 1, 2, \ldots, M - 1$), has the largest value to reduce the gradient. Then, a new profile $(\tilde{q}^{(1)}_i)$ is obtained and the total angular momentum corresponding to this new profile, $D^{(1)}$, becomes smaller than $D^{(0)}$. Repeating the above procedure, we can finally obtain a profile $(\tilde{q}^{(n)})$ that is the total angular momentum corresponding to which, $D^{(n)}$, equals to D_0.

We determine the $Q(q)$ profile that yields the revised Shepherd's bound as a polyline that connects the points (μ_i, \tilde{q}_i) ($j = 1, 2, \ldots, M$). For the above defined $Q(q)$ and (r_{ij}) that corresponds to the profile (\tilde{q}_i), the equality holds in (9) because $(\tilde{q}_j - \tilde{q}_1)/\Delta \mu = 0$ only where $dY/dq = Y_{\text{min}}$. Remembering that \tilde{q}_1 gives an upper bound for F_0, the fact that we have obtained a case in which the equality holds means that (\tilde{q}_1) and the corresponding (r_{ij}) gives the maximum of F_0, attainable by air parcel exchange that conserves the total angular momentum.

4 Summary and discussion

We have demonstrated that the two upper bounds are equivalent. The procedure used in the proof is similar to a simple iteration algorithm that does not require an optimization method. Furthermore, the number of required iterations is less than the number of discretizations, M, and very little memory is required because the procedure does not have to deal with (r_{ij}).

Before closing, let us consider why the proposed procedure yields the upper bound of F_0 under the restriction of D_0. In the proposed procedure, air parcel exchange occurs at latitudes where $(\tilde{q}_1 + \tilde{q}_M)/2\mu$ has the maximum value. The reason for this is explained as follows. Let us assume that in two belts μ_i and μ_j $(\mu_i < \mu_j)$, zonal mean values of absolute vorticity are \tilde{q}_i and \tilde{q}_j, respectively $(\tilde{q}_i < \tilde{q}_j)$, and that air parcel exchange between these two belts generates zonal mean vorticity $(\tilde{q}_j - \tilde{q}_i)$ and $-\tilde{q}_i$ by $(\mu_i$ and μ_j, respectively). The ratio between the increment of F_0 and D_0 by the air parcel exchange is written as $\Delta F_0/\Delta D_0 = \tilde{q}_j - \tilde{q}_i \mu_j/\mu_i - \tilde{q}_i$. Since the right-hand side of (10) is the gradient of the line connecting two points (μ_i, \tilde{q}_i) and (μ_j, \tilde{q}_j), (10) implies that air parcel exchange should occur in intervals where the gradient of mean absolute vorticity is the steepest. Finally, the profile can be reached that gives the minimum of F_0 under the constraint of having the same value of D_0 as the initial profile.

The above interpretation of the procedure seems analogous to annealing, which, in metallurgy, refers to the process of changing the crystal structure of metal to a lower free energy state by increasing and then gradually decreasing the temperature of the metal. If we replace D_0 and F_0 with the temperature and the free energy, respectively, the analogy will be clear.

References