Rheology of Shear-Thickening Micellar Solutions

Flow and phase transitions in micellar systems

Shear thickening & time-dependent rheology

Outline
- Basic shear thickening phenomena
- Wormlike micelles
- Experimental approach – light scattering microscopy
- Rheological & structural behavior

Collaborators
- Chu-heng Liu (Xerox) – light scattering microscopy
- Philippe Boltenhagen (Strasbourg) – rheo-scattering
- Yuntao Hu (Unilever) – rheo-scattering
- Jacqueline Goveas (Rice Univ.) – theory

Worm-like micellar solutions
(in water)

Concentration regimes
- critical micelle concentration (cmc)
 - \(c < \text{cmc} \rightarrow \) only free surfactant molecules
 - \(c > \text{cmc} \rightarrow \) micelles + free surfactant molecules
- overlap concentration (\(c^*\))
 - micelles overlap each other above this concentration
 - experimentally often defined by the concentration where
 - solution viscosity = twice solvent viscosity
Shear-thickening worm-like micellar solutions

CTAB + NaSal + H₂O (cetyltrimethylammonium bromide + sodium salicylate + water)

- Sal⁺ ions are incorporated into micelles ~1:1 (NMR)
 (this is unusual – most charged micelles are not neutral!)
- c* ~ a few millimolar

Most micellar systems which exhibit shear thickening are like this

Shear thickening in dilute worm-like micellar solutions
(basic rheology)

Response after turning on steady shear rate greater than some threshold

Note long latency time prior to shear thickening

Concentrations for shear thickening: ~cmc < c < ~3-5 c*
Experimental Approach

— simultaneous mechanical & structural measurements —

- Illuminate sample in *transparent* shear cell with sheet of light
- Collect light scattered by fluid structures with video camera (dark-field microscopy)

Time-dependent rheology & microscopy above the critical shear rate

- Arrows show growth of shear-induced structure
- Inner cylinder at left, outer cylinder at right

- A white structure starts growing from inner cylinder (left) after about 1 minute

- Growth of white structure associated with increase in apparent viscosity
 \(\Rightarrow \) white structure is very viscous or even gel-like
Measuring velocity profile

- orient sheet of light horizontally
- track movement of tracer particles move through illuminated sheet

Velocity profiles during shear thickening experiment

There is little or no flow within the “white” phase
⇒ we can call it a ~gel

Note: shearing a gel causes it to scatter more light
Rheology of Shear-Thickening Micellar Solutions

Why the steady state gel thickness & apparent viscosity increase discontinuously ...

1. When \(\dot{\gamma} > \dot{\gamma}_c \), “gel” begins to grow from inner cylinder
2. Since the gel doesn’t flow, the shear rate and stress in the remaining fluid increase
3. This causes more gel to form and further increases the shear rate & stress
4. This process continues until there are no more micelles available to attach to gel

Time-dependent rheology & microscopy for controlled stress

- inner cylinder at left
- outer cylinder at right
- a white structure starts growing from inner cylinder after about 120 s
- growth of white structure associated with increase in apparent viscosity
 \[\Rightarrow \] white structure is very viscous or even gel-like
- gel-like structure continues to grow outward until reaching a steady-state thickness of about 5/8 of the cell gap width
Rheology of Shear-Thickening Micellar Solutions

Increase the stress …

- at higher level of stress, gel seems to nearly fill the gap
- there continues to be a close correspondence between the apparent viscosity and the thickness of the gel-like structure

BUT … sometimes the correspondence between gel thickness & apparent viscosity breaks down …

- at 21 s, there is no gel
- at 31 s, the gel is barely visible but can be seen nearly throughout the gap
- at 34 s, the gel is clearly visible & fills gap

BUT …
- the apparent viscosity does not rise significantly until ~10 s later

What is happening?

Homogeneous Nucleation
Nucleation and stability of gel phase

Mechanical equilibrium \(\Rightarrow \sigma \propto \frac{1}{r^2} \)
(balance torque at \(r \))

\(\Rightarrow \) Stress is greatest near inner cylinder

- when stress or shear rate is increased incrementally, gel nucleates only at the inner cylinder
- when stress or shear rate is increased such that \(\sigma > \sigma_c \), gel nucleates everywhere in the cell where \(\sigma > \sigma_c \)

HOMOGENEOUS NUCLEATION

Role of stress and shear rate

- In region II, \(\dot{\gamma} < \dot{\gamma}_c \), but gel remains under controlled stress
- Shear rate in gel phase is nearly zero but gel phase persists for \(\sigma > \sigma_c \)
- Gel phase is observed iff \(\sigma > \sigma_c \)

\(\Rightarrow \) stress (and not shear rate) controls the formation of gel
Rheology of Shear-Thickening Micellar Solutions

Apparent viscosity
(same data as in previous plot)

Shear thickening under constant stress and constant shear rate
a rheological phase diagram (summary of data)
Quenching from gelled state to lower shear rate

Quench experiment
(1) prepare system in high shear fully gelled state
(2) reduce shear rate & follow evolution of stress

“Melting” of gel
Rheology of Shear-Thickening Micellar Solutions

Shear thickening (II) and shear thinning (IV)

Behavior in shear thinning region
Effect of counterion valence on critical shear rate & stress

More rheology …