Sunyaev-Zeldovich Effect Observations and Prospects for Future Surveys

Secondary Anisotropies

Inhomogeneous Reionization:
- Universe Reionized by $z \sim 6$
- Motion of Ionized regions.

Ostriker-Vishniac Effect:
- 2^{nd} order interaction of velocities and density.
- Scales as density squared; small angular scale.

Lensing:
- Small scale CMB anisotropy distorted by the intervening mass distribution (subtle).

Sunyaev-Zeldovich Effect:
- Scattering of CMB by Hot Plasma Bound to clusters of galaxies
 - **Dominant Contribution, Spectrally distinct**
 - Kinetic – Doppler shift of scattered photons (Nonlinear O-V)
CMB Secondary Anisotropy Contributions

CMB photons pass through structure in the universe that introduces secondary anisotropies that dominate the primaries above \(l \sim 3000 \).

Sunyaev-Zel’dovich Effect

Inverse scattering of CMB Photons by Hot Intracluster Plasma

\[I_{\text{cmb}} + \Delta I_{\text{SZ}} \]

\(\sim 1\% \) of CMB is scattered

Two Components of the Electron Velocities

- Thermal (Te\(\sim 100,000,000 \) K)
- Bulk Motion (Doppler Shift)

Produce Two Components of the SZ effect
SZ Thermal Effect

- Due to Thermal Velocity of Electrons
- Mean Energy of Photons Increased

\[
\Delta I_T = I_{comb} \cdot g(x) \quad I_{comb} = \frac{2h \nu^3}{c^2 (e^x - 1)}
\]

Measure of Integrated Pressure:

\[
y = \int \frac{kT \nu}{m_e c^2} n_e \sigma_T \, dl
\]

Comptonization

Non-Relativistic Limit: \(kT_e / mc^2 \ll 1 \)

\[
g(x) = \frac{x e^{-x}}{(e^x - 1)} \left[\text{coth} \left(\frac{x}{2} \right) - 1 \right] \quad x = \frac{h \nu}{kT_{comb}}
\]

ITP 2002

SZ Kinetic Effect

- Due to Bulk Velocity of Electrons

\[
\Delta I_K = I_{comb} \cdot f(x) \int \frac{\bar{v}}{c} \, d\tau
\]

Optical Depth

\[
\tau = \int n_e \sigma_T \, dl
\]

Spectrum Identical to dI/dTcmb

\[
f(x) = \frac{x e^{-x}}{(e^x - 1)} \quad x = \frac{h \nu}{kT_{comb}}
\]

ITP 2002
SZ Spectra

SZ Components Are:
- Distinct
- Independent of Redshift
- Separable by mm wavelength Measurements

SZ measurements

Spectrum measured from the cm through sub mm

BIMA

LaRoque et al. 2002

A2163

Right Ascension (J2000)

Declination (J2000)
SZ as a cosmological Probe

Baryon Fraction:
- SZ and X-ray temperature gives baryon Mass
- Lensing or HSE give total Mass (and \(f_b \))
- \(\Omega_b/f_b = \Omega_m < 0.40 \) (Grego et al. 2000)

Hubble Constant:
- Clusters can be used as standard rods.
- Independent probe of expansion and acceleration.
- Reese et al. (in preparation) 18 clusters from \(z=0.14 \) to \(z=0.83 \)

Peculiar Velocities:
- Just limits so far...

Growth of Structure:
- The growth of structure is sensitive to the density and equation of state of the Universe.
- Source counts of SZ clusters can constrain cosmological models.

SZ surface brightness independent of z

![Images showing SZ surface brightness at different redshifts](image)

X-ray surface brightness: \(S_X \propto (1 + z)^{-4} \)

Clusters should be visible out to the redshift of their formation. For \(\Lambda CDM \), \(z_f \sim 1/\Omega_m - 1 \sim 2 \)
Hydrodynamical Simulation of 1 square degree of SZ sky

Source counts are a steep function of flux

Springel, White, Hernquist 2001

ITP 2002
Mock Observations of Simulated Clusters

Establish Mass Limits for detected Clusters

Mass Limits from Mock Observations

Mass Limits as Function of Telescope Size

5σ detection (10 µK noise)

- 4.2x10^4 M☉ (10 µK)
- 3.8x10^4 M☉ (5 µK)
- 3.4x10^4 M☉ (2 µK)

5σ detection corresponds to:

- 4.2x10^4 M☉ (1.3' beam)
- 6.2x10^4 M☉ (1.8' beam)
- 1.6x10^5 M☉ (4.4' beam)
Galaxy Cluster Surveys and Survey Yields

Cluster surveys probe (1) volume-redshift relation, (2) abundance evolution, (3) structural evolution

\[\frac{dN}{dzd\Omega} = \frac{dV}{d\Omega} n(z) (z) \]

High Resolution simulations by Daihuke Nagai & A. Kravtsov

Effect of Cluster Gas evolution

Effect of varying w on SZE yield for flat universe

$w \equiv \frac{P}{\rho}$ \hspace{1cm} $\rho \propto R^{-3(1+w)}$

- Larger volume of $w = -1$ (Λ model) dominates at low z
- Retarded growth of density perturbations dominates at high z

Expected SZE Yield

Separating Survey volume from Cluster density

Haiman, Mohr & Holder 2000 astro-ph/0002336

(Wildly Optimistic) Constraints on Dark Energy Equation of State

Cluster Redshifts are essential for precise constraints

Mohr et al. 2002
Several Experiments are producing images of Known Clusters: BIMA, OVRO, Ryle, CBI, SuZIE, ACBAR, Diabolo.

These Experiments do not have the sensitivity to search for significant numbers of unknown Clusters.

A new generation of Instruments is under development:

Interferometers: AMI, SZA, AMIBA

Extremely high point source sensitivity - Ideal for producing detailed images

Bolometer Arrays: BOLOCAM, APEX, SPT, ACT

Large format arrays - Ideal for surveying large regions of sky
Ryle Telescope

Eight 13 meter dishes
15 GHz
E-W array

Arcminute MicroKelvin Imager

ten 3.5 meter dishes
12-18 GHz
Sited in Cambridge
Under Construction

Simulated AMI image of A1914
Kneissl et al, astro-ph/0103042
BOLOCAM
151 Element
Bolometer Array
Observes from the
CSO.

Still in commissioning
Stages

ITP 2002

OVRO/BIMA and SZA
SZE Imaging

ITP 2002
OVRO-BIMA SZE Imaging People

John Carlstrom, Marshall Joy, Bill Holzapfel

POSTDOCS:
- Amber Miller (UC Hubble Fellow → Columbia Assist Professor 9/2002)
- Joe Mohr (UC postdoc → U. I. Assist Professor)
- Kim Coble (UC NSF Fellow)

STUDENTS:
- Laura Grego (UC → CfA)
- Gil Holder (UC → IAS Keck Fellowship)
- Erik Reese (UC → Chandra Fellow, UCB)
- Sandy Patel (NASA/MSFC → NRC Fellow)
- Sam LaRoque (UC)
- Kyle Dawson (UCB)
- Daisuke Nagai (UC)

At OVRO and BIMA:

ITP 2002

OVRO / BIMA SZE imaging

OVRO: six 10.4 meter Dishes
2 GHz Bandwidth

BIMA: ten 6.3 meter Dishes
800 MHz Bandwidth
SZE Imaging

- Low-noise mm-wave receivers 1st installed on OVRO during summer
- Array maintained in 1994
- Produce high s/n detection and image of the SZE
- Now 60 clusters imaged and fine scale CMB anisotropy detected

Exploit the stability of interferometry to image low surface brightness emission

Need a compact array:
- Match angular scale of clusters
- Maximum brightness sensitivity
Sample from 60 OVRO/BIMA imaged clusters, $0.07 < z < 1.03$
Extreme example of spatial separation of SZE and point source emission

\(\Omega_{\text{Matter}} \) from SZE derived Gas mass ratios
- Total mass from SZE imaging and assumption of hydrostatic equilibrium
- Results agree with X-ray, M/Light, LSS

\[\frac{(d \Omega_{\text{Matter}})}{d \Omega_{\text{U}}} \]

68% Confidence Upper Limit

Best Guess: \(\Omega_{\text{Matter}} \sim 0.25 \)

ITP 2002
Hubble constant from 18 OVRO/BIMA Observations (blue pts)

\[H = 60 \pm 4 \pm 13 \text{ km} \text{s}^{-1} \text{Mpc}^{-1} \]

<table>
<thead>
<tr>
<th>H</th>
<th>Ω_M</th>
<th>Ω_{Λ}</th>
<th>Ω_{Λ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>60</td>
<td>0.3</td>
<td>0.7</td>
<td>54</td>
</tr>
<tr>
<td>54</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Systematics are now being addressed - no show stoppers

Carlstrom, Holder, ReeseARAA v40, in press

Check of SN Type Ia results at high redshift

SZA survey will provide nearly unbiased sample to $z \sim 2$
BIMA Blank Field Search:

Ten independent fields selected for low dust (IRAS 100\,\mu m) contrast and low radio point source (VLA NVSS and FIRST) emission

- Observed in summers of 1998 to 2001
- 50-81.2 hours per field
- 0.63-1.1 k\Lambda \sim 150\mu Jy/beam
- 1.1-1.7 k\Lambda \sim 150\mu Jy/beam
- \sim 15\mu K rms (2’ beam)

As of August 15 Finished Run to Double Sky Coverage

ITP 2002

BIMA Blank Field Survey

Time = 77.6 hours

\begin{align*}
\text{u-v} & > 2.4 \, \text{k}\Lambda, \\
\text{Beam} & = 21'' \times 22'' \\
\text{RMS} & \sim 130\mu \text{Jy/beam}
\end{align*}

\begin{align*}
\text{u-v} & = 0.63-1.2 \, \text{k}\Lambda, \\
\text{Beam} & = 98'' \times 116'' \\
\text{RMS} & \sim 110\mu \text{Jy/beam} \sim 12\mu K
\end{align*}

Now have 10 fields
Of comparable depth

ITP 2002
Point Sources Analysis:

- Sources identified in 4.8 GHz VLA Maps centered on BIMA fields

- \(\sim 25 \text{ uJy RMS in each map} \)

- All 6\(\sigma \) sources have their positions recorded and are weighted in the noise correlation matrix to remove their contribution. Lost degrees of freedom are negligible.

\[
\begin{align*}
\text{No point Sources:} & \quad \Delta T_1 = 17.7^{+5.2}_{-5.6} \text{ uK} \\
12\sigma \text{ sources removed:} & \quad \Delta T_1 = 16.7^{+5.0}_{-5.8} \text{ uK} \\
8\sigma \text{ sources removed:} & \quad \Delta T_1 = 17.1^{+5.2}_{-5.9} \text{ uK} \\
6\sigma \text{ sources removed:} & \quad \Delta T_1 = 16.4^{+5.3}_{-5.9} \text{ uK}
\end{align*}
\]
CARMA (OVRO+BIMA) + SZA
Unique Heterogeneous Array for mm-wave Science

→ 1st KEY PROJECT: SZE survey and follow-up
 - Survey 12 sq degrees at 27-35 GHz for galaxy clusters
 - SZE follow-up at 30 and 100 GHz
 - Detailed Images essential for Understanding Surveys

ITP 2002
The SZA: eight 3.5m telescopes

- For $1 \text{ cm} \leq \lambda \leq 1 \text{ mm}$ observing:
 - 30 um RMS surface
 - 1 arcsec rms pointing spec
- Allow close pack configuration:
 - 1.2 diameter minimum spacing
- 8 GHz correlation bandwidth
- 26 – 36 GHz & 85 – 115 GHz receivers
- operational by end of 2003
- used as stand alone sub-array or heterogeneous array with CARMA

Designed with Vertex/RSI, lead designer: Eric Chauvin, based on initial design by Dave Woody

ITP 2002

SZA Instrument People and Funding

Chicago: John Carlstrom, Clem Pryke, Erik Leitch, John Cartwright, Amber Miller, Marcus Runyan, Brian Epley, Chris Greer, Michael Loh, Dan Siegal

Caltech: David Woody, David Hawkins, James Lamb, ...

NASA/MSFC: Marshal Joy, Georgia Richards

Funding: NSF-ATI grant, CfCP, McDonnell Foundation, U. Chicago, Packard Foundation

ITP 2002
Improved UV coverage much better imaging

→ Allows detailed SZE imaging with 5" resolution!

Needed to address cluster gas properties and evolution

Yields from SZA Survey

• Mass of clusters is most important. Yields are highly sensitive to cosmology:
 - abundance and volume-redshift relationship

Expected Cosmological Constraints
With SZA Survey Yield

and determine σ_8 to 5%

Dark Energy Equation of State w
with the SZA? (nope)

Determination of w requires:
- better stats (much larger sample)
- controled systematics (better understanding of cluster gas properties and evolution)

\Rightarrow Use SZA+CARMA imaging of SZA survey yields combined with optical, lensing, x-ray observations & simulations to determine gas properties and evolution
Corrugated Scalar Feed

Circular to Rect trx

Low-noise MMIC 1st stage
Isolator

Low-noise MMIC 2nd stage
Isolator

82 GHz High Pass filter

Mixer RF: 85 – 115 GHz
LO: 66.5 – 97 GHz

SZA Dual band Receiver
85 – 115.5 GHz Channel

- Matches OVRO & BIMA RF and IF bands
- Response SSB for improved Tsys
- Uses low-noise MMIC (NSF/UMASS chips, OVRO machining, Chicago assembly and test)
- Prototype working (35 – 65K)

18-28 GHz bandpass

2nd Mixer RF: 18.5-26.5 GHz
SZA LO: 17.5 GHz

Final IF
1 – 9 GHz
William Holzapfel, UCB (KITP New Cosmology Conference 8-20-02) Far Future Observations: Overview

SZA Dual band Receiver

1\(^{st}\) LO: 66.5 – 97 GHz
for sky: 85 – 115.5 GHz

- 100% compatible with CARMA LO reference system
- 17.5 GHz offsets 1\(^{st}\) LO and Rx IF → phase noise cancels
- W-Band mixer from Pacific Millimeter Products

Caltech-OVRO Broadband Reprogrammable Array (COBRA) Correlator

by Daves Hawkins and Woody

1 GHz Digitizer board for PCI crate 500 MHz,
2-bit, 32 multiplex

500 MHz correlator section
(SZA: 8 GHz total bandwidth)

Status: integration testing with simulated signals starting this month. First goal is 4 GHz correlator on six element OVRO mm-array.
Each card: 5 baselines, 500 MHz, 50 lags.
(SZA will double speed to 125 MHz)

ITP 2002
Summary

- Sunyaev-Zel’denovich Effect will be an important tool for the "precision cosmology" era, probing fundamental physics.
- The SZA will provide deep survey over 12 square degrees finding all clusters with $M_{200} > 2 \times 10^{14} h^{-1} M_{\odot}$.
- Provide strong constraints on cosmology.
- Detailed SZE follow-up of survey sample will provide understanding of cluster evolution.

- SZA first light expected by Fall 2003