Far Future Observations: SPT

The South Pole Telescope

John Carlstrom (U. Chicago)
Peter Cheimets (SAO)
Bill Holzapfel (UCB)
Adrian Lee (UCB)
Stephan Meyer (U. Chicago)
Joe Mohr (U. I. Urbana)
Steve Padin (Caltech)
Clem Pryke (U. Chicago)
John Ruhl (Case Western)
Helmuth Spieler (UCB)
Tony Stark (SAO)

(Red = Here today)

Science Objectives:

1. Count SZ clusters; use densities to constrain cosmological parameters… (and “functions” :)

2. Map secondary “CMB anisotropies” at very small angular scales. (PS and “beyond PS”)

3. Measure polarization in the CMB

Instrument:

- Operate (for cosmology) from $\lambda = 1$ to 3 mm
- 8m diameter primary $\Rightarrow < 1.3'$ beam at 150 GHz
- 1º diameter F.O.V. \Rightarrow can use large bolometer arrays
The South Pole Site

Superb atmospheric transmission and stability.
(38 year record… typical precipitable water vapor in winter is 0.25mm!)

Geography: allows deep integrations of fields that do not rise or set. Sun can be shielded for ~9 months.
(eg DASI observed CMB polarization toward two fields for 196 continuous days last austral winter season)

Excellent station and support: transportation, communications, construction support, electrical power, cryogens, technical support, laboratory space, accommodations… all in place.

The South Pole: a gentle environment

• Median wind speed: (summer =4 m s\(^{-1}\), winter = 6 ms\(^{-1}\))
• 90% of months, the wind speed does not exceed 12 m s\(^{-1}\)
• Maximum recorded wind speed since 1958 is 25 m s\(^{-1}\), the lowest “highest recorded wind speed” of any U.S. Weather Service station
• Low snow accumulation (it’s a desert). No rain.

⇒ The only “interesting” engineering is for the cold… otherwise, it’s a very benign environment.
South Pole Telescope Optics

8m diameter:
To achieve at 150GHz the desired 1.3’ resolution for SZE survey

Off-axis Gregorian:
To achieve a wide field with no blockage

Diffraction limited:
over ~ 1 deg² field at λ=2mm

Chopping flat:
placed at image of the primary => low offsets.

8m South Pole Telescope
(old drawing... lower it by one floor.)
A full ground shield will surround the telescope, so we can do low-level CMB observations...

Viper/ACBAR

MAPO, January 2001
fully equipped modern lab

SPT 10\(^3\) element bolometer array
(Lee and Holzapfel and company at UCB)

Smooth conical horns used w/ “Lyot” stop.

One wafer, many detectors (a la Bolocam)

Cutaway of 1027 element array

Note: reading out 1000 channels isn’t easy!
Single SQUID multiplexer \((UCB)\)

- One SQUID per row
- AC-bias => sum signals => demodulate

8-ch prototype has been tested with resistors

SZE with the SPT

- Cluster counting
- Constraining functions \((\text{wake up, Max})\)
- Measuring parameters \((\text{go back to sleep, Max})\)
 - \((\text{skip… } H_0, \text{ baryon fraction, peculiar v’s…})\)

4000 sq. deg. to \(\Delta T_{\text{CMB}} \sim 10 \mu K\) with a 1.3’ beam

\[M_{\text{cluster}} > 4 \times 10^{14} M_{\odot} \]

Expect \(\sim 20,000\) clusters
Mock Observations of Simulated Clusters
(Pryke and Mohr)

Mass Limits from Mock Observations

5σ detection corresponds to:
4.2x10^{14} M_\odot (10 \mu K)
3.8x10^{14} M_\odot (5 \mu K)
3.4x10^{14} M_\odot (2 \mu K)

5σ detection (10\mu K noise) corresponds to:
4.2x10^{14} M_\odot (1.3′ beam)
6.2x10^{14} M_\odot (1.8′ beam)
1.6x10^{15} M_\odot (4.4′ beam)
Anticipated cluster yields from SPT Survey

This is enough that you can start making mass histograms as a function of redshift, i.e., test that Press-Schechter “function”.

Potential Constraints on Dark Energy

- South Pole 8m cluster survey
 - \(M_\text{lim} = 4 \times 10^{14} \text{M}_\odot \) over 4\times10^3 deg^2
 - ~17,000 clusters detected

- Statistical uncertainties on \(w \) and \(\Omega_E \)
 - \(\Delta \Omega_E \) to 0.01
 - \(\langle w \rangle \) to 0.05
 - Marginalized over \(\sigma_z \)

- Important factors not included:
 - Non-flat geometries
 - 10% uncertainty in \(H_0 \) (20% broadening)
 - Cosmic variance
 - Systematic uncertainties

Just when we thought we could test the a(t) “function”, they throw in a new “parameter”!
Potential CMB targets for the South Pole Telescope

*The 8m aperture and excellent site offer incredible opportunities for the next generation of CMB observations:

- **CMB secondary anisotropies**
 (Ostriker-Vishniac effect; Gravitational lensing)
 - Map the Dark Matter, Understand LSS formation

- **CMB polarization**
 (Induced by lensing; B-mode from gravitational waves)
 - Map the Dark Matter, Understand Inflation

(These observations will require receivers beyond the first array…)

Survey Followup: The Importance of Cluster Redshifts
(very important)
CMB: Secondary Anisotropies

CMB photons pass through structure in the universe that introduces secondary anisotropies that dominate the primaries above 1~3000

From Hu & Dodelson, Ann. Reviews 2002

SPT Sensitivity w.r.t. SZ/OV/KSZ

Need other frequencies (90 to 345GHz) to deal with dusty galaxies, etc

150 GHz

217 GHz

John Ruhl, Case Western (KITP New Cosmology Conference 8/20/02)
Far Future Observations: SPT

Dark Matter Mapping
Gravitational lensing by large scale structure imprints a signature on the CMB, which can be used to reconstruct the projected mass.

$10^\circ \times 10^\circ$ simulations by W. Hu

Reconstruction with Temperature Projected Mass Reconstruction with Polarization

4′ beam, 1uK/arcmin2 errors in Temperature map

Stop.
Far Future Observations: SPT

CMB Polarization

Errors shown are for Planck...

Lensing B-modes
(a foreground)

Primordial B-modes, fingerprint of Inflation!

Water vapor and atmospheric transmission

TOP: The upper plot is calculated atmospheric transmittance at zenith. [Pardo, Cernicharo, and Serabyn 2001].

PWV values of 0.2 mm for South Pole, 0.6 mm for Chajnantor and 0.9 mm for Mauna Kea, corresponding to the 25th percentile winter values at each site.

NEW: The 1.5 THz measured transmission at the Pole exceeded 20\% about half the time during July 2001.

MIDDLE AND BOTTOM PLOTS:
Plots of the calculated values of dry air and water vapor opacity.
Dark Energy and Mass Limit Systematic Errors

- Statistical Uncertainty in Mass Estimates
 - Can account for this in analysis

- Systematic Errors in Mass Estimates
 - What is the effect of a constant fractional mass error with redshift?

- Controlling systematic mass errors is primary challenge in doing precision cosmology

<table>
<thead>
<tr>
<th>$\Delta \log M$</th>
<th>Ω_k</th>
<th>$\langle w \rangle$</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25%</td>
<td>0.6661</td>
<td>-1.0000</td>
<td>0.9539</td>
</tr>
<tr>
<td>+10%</td>
<td>0.6859</td>
<td>-0.9999</td>
<td>0.9231</td>
</tr>
<tr>
<td>+5%</td>
<td>0.6927</td>
<td>-0.9998</td>
<td>0.9124</td>
</tr>
<tr>
<td>0%</td>
<td>0.7000</td>
<td>-1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>-5%</td>
<td>0.7061</td>
<td>-0.9988</td>
<td>0.8894</td>
</tr>
<tr>
<td>-10%</td>
<td>0.7105</td>
<td>-0.9969</td>
<td>0.8749</td>
</tr>
<tr>
<td>-25%</td>
<td>0.7265</td>
<td>-0.9579</td>
<td>0.8305</td>
</tr>
</tbody>
</table>