Event-by-event fluctuations – theoretical perspective

- Two ideas:
 - QCD critical point (MS, Rajagopal, Shuryak)
 - Frozen QGP charge fluctuations (Asakawa, Heinz, Muller, Jeon, Koch)

- Framework

1. Lattice calculations: no singularity at $\mu = 0$ (crossover).
3. $1 + 2 = 3$: The 1st order transition must end at critical end-point E. As in water at $p = 221$bar, $T = 373°C$ – critical opalescence.

Where is point E? Challenge for theory and experiment.

Heavy ion collision experiments can discover E and leave a mark on the phase diagram of QCD.
Heavy ion collisions and the QCD phase diagram

"Little Bang"

Time history of a small macroscopic subvolume:

\[\tau_\text{H} \sim 10 - 20 \text{ fm}; \]
\[\tau_\text{free} \sim 1 \text{ fm}; \]
grows as \(n \to 0 \)
when \(\tau_\text{free} \sim \tau_\text{H} - \text{freezeout} \)

(CMB)

Observed hadron spectra reflect thermodynamics at the time of "last interaction" — freezeout time

(Braun-Munzinger, Stachel) \(\rightarrow T, \mu \) at freezeout

Strategy: scan the phase diagram changing \(\sqrt{s} \).
• Why event-by-event fluctuations?

Criticality is always due to a divergent correlation length (= vanishing mass).

In QCD it is \(m_\sigma \to 0 \) (\(\sigma \) - fluctuation of the magnitude of \(\langle \bar{\psi}\psi \rangle \))

\(\sigma \)'s we do not see after freezeout, because \(\sigma \to \pi\pi \) in vacuum

However, at freezeout, fluctuations of the \(\sigma \) field (\(\sim 1/m_\sigma^2 \)) create correlations in the pion momenta distributions (due to \(\sigma\pi\pi \) coupling)

![Diagram showing correlation between pions and \(\sigma \) field]

Such correlations can be measured using e-b-e fluctuations (of \(p_T \))
Misha Stephanov, Univ. Illinois (ITP QCD-RHIC Conference 4-12-02) Fluctuations: theory

Q: What distinguishes σ contribution to F from possible other contrasts?

A: NONMONOTONIC BEHAVIOR ON VS (σ parameter controlling "hypercenter")

\[\langle \Delta n_p \Delta n_{\pi} \rangle \sim \frac{\Delta p_T \Delta k_T}{\sigma_{inc}^2} \]

Define a correlator:

\[C_{p_T}(y_1, y_2) = \sum \delta(y_1 - y_2) \delta(y_2 - y_2) \langle \Delta n_p \Delta n_{\pi} \rangle \frac{\Delta p_T \Delta k_T}{\sigma_{inc}^2} \]

Then

\[(F-1)_{yacc} = \frac{1}{N_{yacc}} \int dy_1 \int dy_2 C_{p_T}(y_1, y_2) \]

to simplify boost invariance: \(C_{p_T}(y_1, y_2) = C_{p_T}(y_1 - y_2) \)

and

\[(F-1)_{yacc} = \int \frac{dy}{N_{yacc}} \left[2 \left(1 - \frac{y}{y_{acc}} \right) C_{p_T}(y) \right] \]

Two limits of \(y_{acc} \):

\[\frac{1}{dy_{acc}} \left\{ \begin{array}{ll} C_{p_T}(0) : y_{acc} \ll y_{corr} \\ \int dy C_{p_T}(y) : y_{acc} \gg y_{corr} \end{array} \right\} \]

Experiments A and B:

\[\frac{(F-1)_A}{(F-1)_B} = \begin{cases} \frac{y_A}{y_B} : y_{A,B} \ll y_{corr} \\ 1 : y_{A,B} \gg y_{corr} \end{cases} \]

FRAMEWORK

ACCEPTANCE (rapidity)

\[\frac{1}{N_{yacc}} \int dy \left[\int dy_2 C_{p_T}(y_1, y_2) \right] \]

i.e. count particles with "weight" \(\frac{\Delta p_T \Delta k_T}{\sigma_{inc}^2} \)

"INTENSIVE"
(Frozen) Charge fluctuations

Asakawa, Heinz, Müller
Jeon, Koch

Fluctuations which do not have time to equilibrate in hadronic phase

Conserved quantity, such as \(q \).

\[\langle \Delta q^2 \rangle_{\text{hadron}} \approx 2 - 3 \langle \Delta q^2 \rangle_{\text{qap}} \text{ (per same entropy)} \]

\(q(\text{quark}) < q(\text{pion}) \)

\(q \) conserved \(\Rightarrow \) can change only by diffusion

(Equation for harmonics of charge distribution in \(y \)

\[f_k = \delta k^2 f_k + \text{noise} \quad k \approx \frac{1}{y} \]

\(\Rightarrow \) long wave harmonics of \(\Delta q \) relax slowly

\[\Delta q^2 = \frac{\Sigma a_k^2 f_k^2}{k} \]

\(\Rightarrow \) for \(\Delta y \gg 1 \)

\[\langle \Delta q^2 \rangle_{\text{present}} < \langle \Delta q^2 \rangle_{\text{hadron}} \]

Experiment (prelim): \(\langle \Delta q^2 \rangle_{\text{present}} = \langle q^2 \rangle_{\text{hadron}} \)

Conclusion: \(\Delta y \) not wide enough (diff. wins)?

Acceptance: analysis similar to \(p_T \) fluctuations: \(C_q(y) \)-balance function

What can we learn from E-b-e?

- By discovering critical point we map a distinct feature of the QCD phase diagram

- Using charge fluctuations we may be able to look back into the history of the collision, and see QGP.