Direct Impact Accretion in AM CVn stars

and its effect upon their evolution

Tom Marsh
University of Southampton

In collaboration with Gijs Nelemans and Danny Steeghs

(Submitted to MNRAS, January 2003)

V407 Vul (RX J1914.4+2456)

• On/off X-ray light curve, period 9.5 minutes.
• Same period at optical and IR wavelengths.
• No other periods seen.
• Weak line emission.
• No circular polarisation.
• “Super-soft” X-ray spectrum, $kT \sim 50$ eV

What is V407 Vul?

- **Cropper et al. (1998):** first magnetic, mass-transferring double white dwarf. $P = 9.5$ min.
  - *but no circular polarisation.*
- **Wu et al. (2002):** electric star, cf Jupiter-Io. $P = 9.5$ min.
  - *but short lived (~ 1000 yr).*
- **Norton et al (2002):** face-on “intermediate polar”. $P \sim$ hours.
  - *but no line emission or other periods.*

Accretion by Direct Impact

At $P = 9.5$ min, the stream can crash directly into the accreting white dwarf:

- Nelemans et al (2001)
- Marsh & Steeghs (2002)

This explains:

- 50% X-ray duty cycle
- Lack of circular polarisation
- Lack of line emission
- Soft X-ray spectrum
Whatever the true nature of V407 Vul, direct impact accretion is an inevitable consequence of the start of mass transfer between most double white dwarfs.

e.g. Nelemans et al (2001).

**Mass Transfer**

If donor overfills its Roche lobe by $\Delta$ then:

$$-\dot{M}_2 \propto e^{\Delta/H} \quad (H \sim 100 \text{ m})$$

CVs, LMXBs:

$$\frac{1}{2R_2} \frac{d \Delta}{dt} = -\frac{\dot{J}_{\text{GR}}}{J_{\text{orb}}} + \left(\frac{5}{6} - q\right) \frac{\dot{M}_2}{M_2}$$

Ultra-compact:

$$\frac{1}{2R_2} \frac{d \Delta}{dt} = -\frac{\dot{J}_{\text{GR}}}{J_{\text{orb}}} + \left(\frac{5}{6} - q - \sqrt{(1 + q)r_h}\right) \frac{\dot{M}_2}{M_2}$$

$$\frac{kM_1R_1^2}{\tau_S J_{\text{orb}} \omega}$$
**A Tale of Two Systems**

Solid line:

\[
M_1 = 0.500 \, M_\odot \\
M_2 = 0.125 \, M_\odot
\]

Dashed line:

\[
M_1 = 0.500 \, M_\odot \\
M_2 = 0.126 \, M_\odot
\]

**Numerical Integrations**

Survival depends upon synchronisation of accretor’s spin

\[
\tau(\text{sync}) = 10 \, \text{yr} \quad \tau(\text{sync}) = 0.1 \, \text{yr}
\]
What matters is the accretor’s size

Direct impact:

Disc only:

(Both plots have zero synchronisation torque.)

Size of Accretor vs Direct Impact

\(\sqrt{(1+q)r_h}\) is the destabilising term.

Direct: \(r_h = \frac{R_{\text{circ}}}{a}\)

Disc: \(r_h = \frac{R_1}{a}\)

But \(R_1 \sim R_{\text{circ}}\) so similar effect in each case
**Effect upon birth rate of AM CVn stars**

Synchronisation torque must be $< 1000$ yr to have much effect

DWD path to AM CVns uncertain by factor of 100

---

**The Need for More Systems**

- **KUV 01584-0939**
  - $P = 10.3$ mins
  - Woudt & Warner (2002)

- **V407 Vul**
  - $P = 9.5$ mins

- **RX J0806.3+1527**
  - $P = 5.4$ mins
  - Israel et al (2002)
Conclusions

1. Direct impact accretion is inevitable during mass transfer between double white dwarfs.
2. The loss of angular momentum from the large relative size of the accreting white dwarf is destabilising.
3. Strong spin-orbit synchronisation is needed to counteract the destabilisation.
4. Well worth trying to find more very short period systems.